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L E T T E R  T O  T H E  E D I T O R

Recommended improvements to the statistical guidelines

To the Editor,
The website for this journal currently provides its official 
‘Statistical Guidelines’ (https://​onlin​elibr​ary.​wiley.​com/​page/​
journ​al/​14751​313/​homep​age/​stati​stical_​guide​lines.​htm) in 
the form of several editorial articles. Much of the material in 
those articles is valuable and correct. However, some of the 
articles contain statements that require clarification. In the 
present letter, two such articles are critically evaluated: ‘Is 
There a Large Sample Size Problem?’1 and ‘When to Use the 
Bonferroni Correction’2 (both by Armstrong). Updates to the 
statistical guidelines are then recommended.

CR ITI QUE O F ‘ IS  TH E R E A L ARG E 
SAM PLE SIZE PRO BLE M? ’

The larger a sample is, the more closely it will tend to re-
semble the population that it came from, and thus the 
more reliable the inferences about that population will 
tend to be. Larger samples not only tend to provide more 
statistical power for hypothesis testing but also tend to 
provide a more accurate and more precise estimation of 
the population parameter (e.g., effect or correlation) that 
is being investigated.3,4 Thus, although there can of course 
be logistical and financial (and in some cases, ethical) 
constraints on what sample size is feasible, there is gen-
erally no such thing as a sample being ‘too large’ for pur-
poses of statistical inference. It is therefore surprising that 
Armstrong1 proposed that researchers should limit their 
sample sizes to avoid ‘both a small and large sample size 
problem’. Armstrong has made the same claim in other ar-
ticles as well, stating for example that ‘having too large a 
sample size may create as many problems of interpretation 
as having an inadequate sample size’,5 and that ‘both a too 
small and a too large a sample size can cause problems in 
testing the hypothesis and in interpretation’.6

Armstrong's1 concern was based on the fact that large 
sample sizes increase the likelihood of statistical signifi-
cance when the effect or correlation being investigated 
is non-zero, even in cases where that effect or correlation 
is too small to be clinically relevant. The resulting ‘large 
sample size problem’, according to Armstrong, is that large 
samples make statistical significance a poor indicator of 
clinical relevance, since ‘there is the increased chance of 
demonstrating a statistically significant effect which is too 
small to be clinically meaningful’.1 However, the problem 
in that scenario is not that the sample size is too large. 
Rather, the problem is that statistical significance is being 

interpreted as clinical relevance—which is inappropriate 
regardless of the sample size.3,4,7,8 The American Statistical 
Association's official statement on p-values was unequivo-
cal on that point: ‘A p-value, or statistical significance, does 
not measure the size of an effect or the importance of a 
result’.7

When the goal is to evaluate the size of an effect or cor-
relation (or of some other parameter), the most appropri-
ate inferential tool is typically a confidence interval—not a 
p-value.3,4,7,8 A confidence interval proposes a lower and 
upper bound for the parameter being estimated. That is, it 
provides margins of error below and above the point esti-
mate. Thus, for example, if the confidence interval's lower 
bound exceeds a predesignated threshold of clinical rele-
vance, that could be taken as evidence in favour of a clini-
cally relevant effect.

What about the situation that Armstrong1 was con-
cerned about, where a large sample reveals ‘a statistically 
significant effect which is too small to be clinically mean-
ingful’? In that case, appropriately concluding that there 
is evidence for a non-zero effect (due to statistical signifi-
cance) would not prevent the researcher from also appro-
priately concluding that there is evidence against the effect 
being clinically meaningful on average (due to the confi-
dence interval being entirely within some designated clini-
cally irrelevant range).9 Thus, although Armstrong1 blamed 
large sample size for an inferential ‘problem’ that allegedly 
‘can affect all statistical procedures to some extent’, there 
is not actually a problem as long as each statistical proce-
dure is used for its proper inferential purpose: The p-value 
can be used to evaluate evidence against the effect being 
zero, while the confidence interval can be used to make a 
more specific inference about how large the effect is.3,4,7–9 
In fact, the larger the sample, the smaller the standard error 
will be for the estimation,3 and thus the more likely that the 
confidence interval will be narrow enough to provide con-
clusive evidence about whether the effect is indeed ‘too 
small to be clinically meaningful’.

Thus, when a researcher is interested in whether an 
effect or correlation is large enough to be clinically rele-
vant, the preferable approach is to use a large sample and 
compute a confidence interval—yet Armstrong1 cautioned 
against large samples and did not mention confidence in-
tervals anywhere in the article. Armstrong did rightly call 
for researchers to consider the correlation's magnitude in 
addition to its statistical significance. But Armstrong de-
picted that evaluation of magnitude as being based on 
a point estimate, such as the sample correlation or the r2. 
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Importantly, even when the point estimate is examined in 
conjunction with the p-value, that is not an adequate sub-
stitute for using a confidence interval, since neither the p-
value nor the point estimate provides margins of error for 
the estimation.3,4

To be clear, confidence intervals are imperfect tools 
that, like any other statistic, are subject to misuse and mis-
interpretation.4 Moreover, confidence intervals alone are 
not sufficient for thoroughly evaluating clinical relevance. 
Indeed, evaluating clinical relevance is often a complex 
task that requires considering many types of information 
(some statistical, some not) besides just the estimated 
magnitude of the effect on average. Nonetheless, confi-
dence intervals are typically essential tools when clinical 
relevance is of interest.3,4,7,8

In short, there is not a ‘large sample size problem’ 
in statistical inference. Larger samples tend to provide 
better inferences, not worse. That principle holds true 
regardless of whether the focus is on statistical signifi-
cance or on confidence intervals, as long as those tools 
are used properly. Although Armstrong may be correct 
that some misguided researchers use statistical sig-
nificance improperly (e.g., ‘if a result is statistically sig-
nificant it is assumed to be clinically relevant’),1 those 
researchers should be encouraged to stop doing that 
and to use confidence intervals,3 not encouraged to use 
smaller samples.

CR ITI QUE O F ‘ WH E N TO USE TH E 
BO N FE R RO N I CO R R EC TIO N ’

Armstrong's2 article on Bonferroni adjustment made some 
true and important statements. For example, it rightly 
noted that many studies do not adequately address the 
problem of multiple testing. It also correctly noted that 
Bonferroni adjustment is not always the best method for 
a given multiple-testing situation. And perhaps most im-
portantly, the article rightly stated that researchers should 
be transparent about which aspects of their analysis were 
planned a priori. However, the article also contains errors 
and misunderstandings.

The first error is in the unsourced formula 1 – (1 – α)/T, 
where α is the ‘critical p level’ (more commonly called 
the alpha level) for each test, and T is the number of 
tests.2 Armstrong made two conflicting claims—nei-
ther of which is correct—about what that formula rep-
resents. First, Armstrong claimed that the formula gives 
the probability of at least one Type I error (a probability 
known as the familywise Type I error rate or FWER) when 
all null hypotheses are true. But Armstrong was presum-
ably thinking of 1 – (1 – α)T, which is the correct formula 
when the tests are statistically independent10 (though 
Armstrong did not mention assuming independence). 
Indeed, that correct formula produces the value of ~0.64 
that Armstrong gave as the FWER for α = 0.05 and T = 20 
(see also Armstrong et  al.11), whereas inputting those 

same values of α and T to Armstrong's erroneous formula 
produces a nonsensical value of 0.9525.

Adding to the confusion, after incorrectly claiming 
that the formula 1 – (1 – α)/T gives the FWER, Armstrong 
then claimed in the next sentence that the same for-
mula was for something else: an adjusted alpha level 
for which α/T is ‘an approximation’.2 But that is not cor-
rect either, as Armstrong's formula does not yield values 
anywhere near α/T (except when T = 1). Instead of the 
erroneous formula 1 – (1 – α)/T, presumably in this case 
Armstrong was thinking of 1 – (1 – α)1/T, which is the ad-
justed alpha level when using the Šidák procedure to 
control the FWER.12 Indeed, the Šidák-adjusted alpha 
level does tend to be near the classical α/T Bonferroni-
adjusted alpha level. For example, when α = 0.05 and 
T = 2, the Bonferroni-adjusted alpha level for each test 
is 0.05/2 = 0.025, and the Šidák-adjusted alpha level for 
each test is 1 – (1 – 0.05)1/2 ≈ 0.0253.

Armstrong also claimed that Bonferroni-adjusted test-
ing ‘is often concerned with the wrong hypothesis and 
is in actuality a test of the “universal” HO, that is, if 20 
different comparisons were made on two groups, that 
the two groups were identical in all comparisons’2 (see 
also Armstrong et al.11). The same claim has been made 
by many other articles that, like Armstrong, cited an 
opinion piece by Perneger13 (examples of such citations 
were compiled in Frane14). However, the claim is a known 
myth, and despite its appearance in many non-statistical 
sources, it has been unequivocally debunked in statis-
tical journals.14,15 Indeed, it is a proven mathematical 
fact—not a matter of opinion—that Bonferroni-adjusted 
testing provides decisions about all the individual null 
hypotheses, not just a single global decision about the 
omnibus (‘universal’) null hypothesis. Simple proofs of 
that fact, based on Boole's inequality, have been pro-
vided.10,15,16 Note also that in the presumably rare cases 
that the omnibus null hypothesis is actually the hypoth-
esis of interest, there are more efficient ways to test that 
hypothesis than to conduct Bonferroni-adjusted tests of 
all the individual hypotheses.15 Thus, there is no appar-
ent justification for Armstrong's2 recommendation that 
Bonferroni-adjusted testing be used when ‘a single test 
of the “universal null hypothesis” (HO) that all tests are 
not significant is required’.

Some of Armstrong's2 other recommendations are 
confusing as well, and some appear to be inconsistent. 
For example, Armstrong recommended not using any ad-
justment when ‘a study is exploratory involving post-hoc 
testing of unplanned comparisons which are regarded as 
hypotheses for further investigation’. Yet, Armstrong rec-
ommended considering Bonferroni adjustment when ‘a 
large number of tests are carried out without preplanned 
hypotheses in an attempt to establish any results that may 
be significant’. It is not clear what the defining difference 
is between those two scenarios. Presumably, Armstrong 
meant to emphasise the ‘exploratory’ nature of the study 
in the first scenario, since formal adjustment is often not 
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considered necessary when the tests themselves are es-
sentially informal anyway.17,18 But both scenarios involve 
fishing through the data without preplanned hypotheses 
to see what turns up. Thus, the second scenario is effec-
tively just as exploratory as the first. And in both scenar-
ios, any statistically significant ‘results’ that the researcher 
might ‘establish’ would be better considered as ‘hypothe-
ses for further investigation’, rather than as discoveries or 
confirmatory demonstrations.

Indeed, it is important for readers to understand that 
if hypotheses were not planned before seeing the data, 
then the hypotheses typically cannot be meaningfully 
‘tested’—except in an informal sense—on those same 
data, due to the effects of selection bias on Type I error 
rates.7,10,14,17,19 Even Bonferroni adjustment typically can-
not remedy that problem.10,17 That is because to over-
come selection bias, the adjustment would theoretically 
need to account not only for the finite number of actually 
conducted tests, but also for the potentially indetermi-
nate number of tests that would have been conducted in 
alternative scenarios where the data had come out differ-
ently and different hypotheses had looked promising.10 
Thus, when doing an analysis of unplanned hypotheses, 
deciding whether to adjust or not is typically far less im-
portant than acknowledging that the ‘tests’ should not 
be interpreted (or presented) as formal hypothesis tests 
at all. Moreover, researchers should not have a false sense 
of security that they can transform their unplanned test-
ing into a rigorous, confirmatory analysis merely by ap-
plying Bonferroni adjustment.

Armstrong also recommended not using any multiple-
testing adjustment ‘if the study is restricted to a small 
number of planned comparisons’.2 It is not clear exactly 
what was meant by ‘a small number’. But unless that small 
number is 1, the FWER can be substantially inflated if no ad-
justment is applied. For example, even for just two planned 
comparisons, the FWER is nearly doubled if no adjustment 
is applied (assuming true null hypotheses and roughly 
independent tests). And for just three planned compari-
sons, the FWER may be nearly tripled if no adjustment is 
applied—meaning a ~1 in 7 chance of making at least one 
Type I error when α = 0.05. Thus, it is not clear what the 
mathematical or theoretical basis could be for the recom-
mendation. Moreover, multiple-testing adjustments are al-
ready inherently less stringent for smaller numbers of tests, 
so there is no apparent reason for special leniency to be 
required in such cases.

The idea that ‘planned’ tests should be inherently ex-
empt from multiple-testing adjustment, either in general 
or when the tests are few in number, is a common assertion 
by researchers. But that assertion appears to lack adequate 
foundation.14,20 To be clear, there are situations where a 
small number of planned tests do not need adjustment. 
However, in such cases, the reason the tests are exempt 
from adjustment is not simply because they are a small 
number of planned tests. For instance, in some situations, 
the FWER is inherently controlled by the testing structure 

(e.g., when using serial gatekeeping and the test sequence 
is defined a priori in the analysis plan).10,18

It is worth explaining why Bonferroni adjustment dif-
fers from other multiple-testing procedures, and why a re-
searcher might choose one procedure over another. First of 
all, the more positive the inter-test dependence is (i.e., the 
more that statistical significance in one test would make 
statistical significance in another test more likely), the less 
the FWER is inflated by unadjusted tests, and thus the less 
stringent an adjustment can be while still controlling the 
FWER.15,21 Bonferroni adjustment makes no assumptions 
about inter-test dependence,15 whereas Šidák adjustment 
achieves its marginally lower stringency by assuming the 
inter-test dependence is nonnegative12 (which is typically a 
reasonable assumption, at least for two-sided tests). Other 
FWER-control procedures can reduce stringency more sub-
stantially by exploiting positive inter-test dependence. In 
some cases, that positive inter-test dependence is inher-
ent to the study design (e.g., when using a procedure that 
is specially optimised for comparing ‘all possible pairs’ of 
groups).21 In other cases, the procedure itself creates pos-
itive inter-test dependence (e.g., when using a multi-step 
procedure like Holm22 or Hommel,23 though such meth-
ods often cannot be applied to two-sided confidence in-
tervals). To minimise the increased risk of Type II errors, 
researchers often want to choose the most ‘powerful’ (i.e., 
least stringent) adjustment procedure that reliably controls 
the FWER in the given context.15,21

That said, although the FWER is the most commonly ref-
erenced overall Type I error rate, it is not the only overall 
Type I error rate that can be considered. For example, the 
classical α/T Bonferroni adjustment controls not only the 
FWER, but also the per-family Type I error rate (the expected 
number of Type I errors), which is a stricter standard than 
the FWER.24,25 There are also procedures that are designed 
to control only the false discovery rate (a more lenient stan-
dard than the FWER), though their use is largely confined 
to contexts where the number of tests is very large (e.g., in 
the hundreds or thousands) and strong conclusions about 
individual hypotheses are not required.15,25

Heuristically speaking, multiple-testing adjustment 
should be considered when an analysis involves multi-
ple unique opportunities for a false finding. That leaves 
room for subjectivity in some cases, regarding what 
constitutes a single ‘analysis’ (i.e., which tests should be 
included in a given family)10,21 and what constitutes a 
‘finding’. In the case of clinical trials for new drugs, indus-
try guidances often resolves those issues.18 But in some 
contexts, especially when the potential costs of Type I 
and Type II errors are not as clear-cut, researchers may 
reasonably disagree about whether or how adjustment 
should be applied, depending on how the test results are 
expected to be used. In any case, decisions about how 
to adjust should be incorporated into the analysis plan 
a priori.18 And such decisions should be made thought-
fully, based on correct understanding of the principles 
involved, not based on arbitrary criteria (e.g., exempting 



4  |      LETTER TO THE EDITOR

tests from adjustment simply because they are planned 
and few in number).

CO NCLUSIO NS

The misunderstandings that have been discussed here 
are important because they involve fundamental statis-
tical principles that have implications for how research 
should be conducted and interpreted. Moreover, when 
misunderstandings in the scientific literature are left un-
corrected, they can spread and have real consequences 
on research practice. For example, Perneger's13 false claim 
that Bonferroni-adjusted testing only addresses the ‘uni-
versal’ null hypothesis was repeated by Armstrong2 (and 
by many other authors, e.g., Schulz and Grimes26) and 
in turn has been repeated by dozens of articles that cite 
Armstrong.2 In fact, a Google Scholar search for citations 
of Armstrong2 that contain the exact phrase ‘univer-
sal null hypothesis’ yields 13 documents from the year 
2023 alone, mostly by researchers attempting to justify 
their unadjusted tests. The number of researchers who 
have not directly cited Armstrong, but nonetheless have 
been directly or indirectly influenced by the false claim, is 
indeterminate.

In the interest of promoting readers' understanding 
and reducing the further spread of misconceptions, I rec-
ommend that updates be made to this journal's statistical 
guidelines. For example, in place of the two articles1,2 that 
have been critiqued here, readers could be directed to other 
resources, such as the American Statistical Association's 
statement on p-values.7 I also recommend Calin-Jageman 
and Cumming4 as well as Hawkins and Samuels,9 which 
give practical, nontechnical guidance on how to use con-
fidence intervals properly. Readers may also be interested 
in Frane,14 which discusses some common misconceptions 
about multiple-testing adjustment. Lastly, readers should 
know about websites such as clini​caltr​ials.​gov and osf.​io, 
which allow researchers to register their study protocols 
and analysis plans a priori in a verifiable way and thus bol-
ster the credibility of their planned tests.

In any case, researchers should be wary of claims about 
statistical principles when those claims are not supported 
by mathematical logic or by citations of authoritative sta-
tistical sources, especially if those claims tell the research-
ers what they want to hear (e.g., that their multiple tests 
are inherently exempt from adjustment for some rea-
son). Statistical misconceptions are abundant in the non-
statistical literature (as noted in previous articles14,15,17,20), 
and the medical literature is no exception.

AU T H O R  C O N T R I B U T I O N S
Andrew V. Frane: Conceptualization (equal); investigation 
(equal); writing – original draft (equal); writing – review and 
editing (equal).

F U N D I N G  I N F O R M AT I O N
The author has no funding to declare.

C O N F L I C T  O F  I N T E R E S T  S TAT E M E N T
The author has no conflict of interest to declare.

Andrew V. Frane

Occidental College, Los Angeles, California, USA

Correspondence
Andrew V. Frane, Occidental College, Los Angeles, 

CA, USA.
Email: avfrane@ucla.edu

O R C I D
Andrew V. Frane   https://orcid.org/0000-0002-5057-7567 

R E F E R E N C E S
	 1.	 Armstrong RA. Is there a large sample size problem? Ophthalmic 

Physiol Opt. 2019;39:129–30.
	 2.	 Armstrong RA. When to use the Bonferroni correction. Ophthalmic 

Physiol Opt. 2014;34:502–8.
	 3.	 Gardner MJ, Altman DG. Confidence intervals rather than p 

values: estimation rather than hypothesis testing. Stat Med. 
1986;292:746–50.

	 4.	 Calin-Jageman RJ, Cumming G. The new statistics for better sci-
ence: ask how much, how uncertain, and what else is known. Am 
Stat. 2019;73:271–80.

	 5.	 Armstrong RA, Eperjesi F, Gilmartin B. The use of correlation and 
regression methods in optometry. Clin Exp Optom. 2005;88:81–8.

	 6.	 Armstrong RA. Should Pearson's correlation coefficient be avoided? 
Ophthalmic Physiol Opt. 2019;39:316–27.

	 7.	 Wasserstein RL, Lazar NA. The ASA's statement on p-values: context, 
process, and purpose. Am Stat. 2016;70:129–33.

	 8.	 Livingston EH. Study design and statistics. In: Christiansen SL, 
Iverson C, Flanagin A, Livingston EH, Fischer L, Manno C, et al., edi-
tors. AMA manual of style: a guide for authors and editors. 11th ed. 
New York: Oxford University Press; 2020.

	 9.	 Hawkins AT, Samuels LR. Use of confidence intervals in interpreting 
nonstatistically significant results. JAMA. 2021;326:2068–9.

	10.	 Hochberg Y, Tamhane AC. Multiple comparison procedures. New 
York: Wiley; 1987.

	11.	 Armstrong RA, Davies LN, Dunne MCM, Gilmartin B. Statistical 
guidelines for clinical studies of human vision. Ophthalmic Physiol 
Opt. 2011;31:123–36.

	12.	 Šidák Z. Rectangular confidence regions for the means of multivar-
iate normal distributions. J Am Stat Assoc. 1967;62:626–33.

	13.	 Perneger TV. What's wrong with Bonferroni adjustments. BMJ. 
1998;316:1236–8.

	14.	 Frane AV. Misguided opposition to multiplicity adjustment remains 
a problem. J Mod Appl Stat Meth. 2019;18:eP2836. https://​doi.​org/​10.​
22237/​​jmasm/​​15566​69400​

	15.	 Goeman JJ, Solari A. Multiple hypothesis testing in genomics. Stat 
Med. 2014;33:1946–78.

	16.	 Dunn OJ. Estimation of the means of dependent variables. Ann 
Math Stat. 1958;29:1095–111.

	17.	 Bender R, Lange S. Adjusting for multiple testing—when and how? 
J Clin Epidemiol. 2001;54:343–9.

	18.	 Committee for Proprietary Medicinal Products. Points to consider 
on multiplicity issues in clinical trials. London: European Agency for 
the Evaluation of Medicinal Products; 2002.

https://clinicaltrials.gov
https://osf.io
mailto:
https://orcid.org/0000-0002-5057-7567
mailto:avfrane@ucla.edu
https://orcid.org/0000-0002-5057-7567
https://orcid.org/0000-0002-5057-7567
https://doi.org/10.22237/jmasm/1556669400
https://doi.org/10.22237/jmasm/1556669400


      |  5LETTER TO THE EDITOR

	19.	 Selvin HC, Stuart A. Data-dredging procedures in survey analysis. 
Am Stat. 1966;20:20–3.

	20.	 Frane AV. Planned hypothesis tests are not necessarily exempt 
from multiplicity adjustment. J Res Pract. 2015;11:P2. Retrived from: 
https://​files.​eric.​ed.​gov/​fullt​ext/​EJ108​3896.​pdf. Accessed 20 July, 
2024.

	21.	 Frane AV. Experiment-wise Type I error control: a focus on 2 × 2 de-
signs. Adv Meth Pract Psychol Sci. 2021;4:1–20.

	22.	 Holm S. A simple sequentially rejective multiple test procedure. 
Scand J Stat. 1979;6:65–70.

	23.	 Hommel G. A stagewise rejective multiple test procedure based on 
a modified Bonferroni test. Biometrika. 1988;75:383–6.

	24.	 Frane AV. Are per-family Type I error rates relevant in social and be-
havioral science? J Mod Appl Stat Meth. 2015;14:12–23.

	25.	 Lawrence J. Familywise and per-family error rates of multiple com-
parison procedures. Stat Med. 2019;38:3586–98.

	26.	 Schulz KF, Grimes DA. Multiplicity in randomised trials I: endpoints 
and treatments. Lancet. 2005;365:1591–5.

https://files.eric.ed.gov/fulltext/EJ1083896.pdf

	Recommended improvements to the statistical guidelines
	REFERENCES


